An Automatic Building Extraction and Regularisation Technique Using LiDAR Point Cloud Data and Orthoimage

نویسندگان

  • Syed Ali Naqi Gilani
  • Mohammad Awrangjeb
  • Guojun Lu
چکیده

The development of robust and accurate methods for automatic building detection and regularisation using multisource data continues to be a challenge due to point cloud sparsity, high spectral variability, urban objects differences, surrounding complexity, and data misalignment. To address these challenges, constraints on object’s size, height, area, and orientation are generally benefited which adversely affect the detection performance. Often the buildings either small in size, under shadows or partly occluded are ousted during elimination of superfluous objects. To overcome the limitations, a methodology is developed to extract and regularise the buildings using features from point cloud and orthoimagery. The building delineation process is carried out by identifying the candidate building regions and segmenting them into grids. Vegetation elimination, building detection and extraction of their partially occluded parts are achieved by synthesising the point cloud and image data. Finally, the detected buildings are regularised by exploiting the image lines in the building regularisation process. Detection and regularisation processes have been evaluated using the ISPRS benchmark and four Australian data sets which differ in point density (1 to 29 points/m2), building sizes, shadows, terrain, and vegetation. Results indicate that there is 83% to 93% per-area completeness with the correctness of above 95%, demonstrating the robustness of the approach. The absence of overand many-to-many segmentation errors in the ISPRS data set indicate that the technique has higher per-object accuracy. While compared with six existing similar methods, the proposed detection and regularisation approach performs significantly better on more complex data sets (Australian) in contrast to the ISPRS benchmark, where it does better or equal to the counterparts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area

Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...

متن کامل

Rule-based Segmentation of Lidar Point Cloud for Automatic Extraction of Building Roof Planes

This paper presents a new segmentation technique for LIDAR point cloud data for automatic extraction of building roof planes. Using the ground height from a DEM (Digital Elevation Model), the raw LIDAR points are separated into two groups: ground and nonground points. The ground points are used to generate a ‘building mask’ in which the black areas represent the ground where there are no laser ...

متن کامل

Automatic Segmentation of Lidar Data at Different Height Levels for 3d Building Extraction

This paper presents a new LiDAR segmentation technique for automatic extraction of building roofs. First, it uses a height threshold, based on the digital elevation model to divide the LiDAR point cloud into ‘ground’ and ‘non-ground’ points. Then starting from the maximum LiDAR height, and decreasing the height at each iteration, it looks for coplanar points to form planar roof segments. At eac...

متن کامل

Automatic extraction of building roofs using LIDAR data and multispectral imagery

Automatic 3D extraction of building roofs from remotely sensed data is important for many applications including city modelling. This paper proposes a new method for automatic 3D roof extraction through an effective integration of LIDAR (Light Detection And Ranging) data and multispectral orthoimagery. Using the ground height from a DEM (Digital Elevation Model), the raw LIDAR points are separa...

متن کامل

Automated Building Extraction: Comparison of Paradigms and Examples

This paper compares the paradigms of LiDAR and aerophotogrammetry in the context of building extraction and briefly discusses two roof building contour extraction methodologies. The assets and drawbacks of both data capturing system have been reported several times. In general, empirical and theoretical studies have confirmed that LiDAR methodologies are more suitable in deriving building heigh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016